
Journal Pre-proof

Enhanced load balancing technique for SDN controllers: A
multi-threshold approach with migration of switches

Mohammad Kazemiesfeh, Somaye Imanpour,
Ahmadreza Montazerolghaem

PII: S0140-3664(25)00124-0
DOI: https://doi.org/10.1016/j.comcom.2025.108167
Reference: COMCOM 108167

To appear in: Computer Communications

Received date : 3 November 2024
Revised date : 16 February 2025
Accepted date : 1 April 2025

Please cite this article as: M. Kazemiesfeh, S. Imanpour and A. Montazerolghaem, Enhanced load
balancing technique for SDN controllers: A multi-threshold approach with migration of switches,
Computer Communications (2025), doi: https://doi.org/10.1016/j.comcom.2025.108167.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier B.V.

https://doi.org/10.1016/j.comcom.2025.108167
https://doi.org/10.1016/j.comcom.2025.108167

Journal Pre-proof

Ke

1

S
inc
pla
an
spe

T
mo
mu
nu
ma
thi
sca
mi
Th
con

D
exi
cap
rem
fre
ba
an

Revised Manuscript Click here to view linked References
Jo
ur

na
l P

re
-p

ro
of

Enhanced Load Balancing Technique for SDN Controllers:

A Multi-Threshold Approach with Migration of Switches

Mohammad Kazemiesfeha, Somaye Imanpourb, Ahmadreza Montazerolghaemc∗
aFaculty of Computer Engineering, University of Isfahan, Isfahan, Iran
bFaculty of Computer Engineering, University of Isfahan, Isfahan, Iran
cFaculty of Computer Engineering, University of Isfahan, Isfahan, Iran

∗Corresponding author: Ahmadreza, Montazerolghaem; a.montazerolghaem@comp.ui.ac.ir

Abstract

Deploying multiple controllers in the control panel of software-defined networks increases scala-
bility, availability, and performance, but it also brings challenges, such as controller overload. To
address this, load-balancing techniques are employed in software-defined networks.Controller load
balancing can be categorized into two main approaches: (1) single-level thresholds and (2) multi-level
thresholds. However, previous studies have predominantly relied on single-level thresholds, which
result in an imprecise classification of controllers or have assumed uniform controller capacities in
multi-level threshold methods. This study explores controller load balancing with a focus on uti-
lizing multi-level thresholds to accurately assess controller status. Switch migration operations are
utilized to achieve load balancing, considering factors such as the degree of load imbalance of the
target controller and migration efficiency. This includes evaluating the post-migration status of the
target controller and the distance between the migrating switch and the target controller to select the
appropriate target controller and migrating switch. The proposed scheme reduces controller response
time, migration costs, communication overhead, and throughput rate. Results demonstrate that our
scheme outperforms others regarding response time and overall performance.

ywords: Software-defined networks; controller load balancing; multi-level thresholds; switch migration

Introductions

oftware-defined networks facilitate network management by vertically dividing the network into three planes,
luding the data plane, the control plane, and the application plane [1,2]. The controller domain in the data
ne contains several switches that are managed by that controller [3]. The communication between the controller
d the data plane is through the user interface, the most common OpenFlow user interface. OpenFlow helps
ed up controller management [4].

he control panel consists of multiple controllers arranged in a distributed manner [5], each interconnected to
nitor the network’s status. However, these controllers can themselves become overloaded [6]. The need for
lti-controller load balancing in SDN environments arises from the growing demand to manage an increasing
mber of devices and network traffic. Traditional network architectures, which rely on distributed control planes,
y struggle to scale effectively and handle these rising demands. Multi-controller load balancing addresses
s challenge by distributing the control plane workload across multiple controllers, thereby enhancing network
lability, availability, and the ability to manage a larger volume of devices and traffic [7]. One approach to
tigating controller load imbalance in Software-Defined Networking (SDN) environments is switch migration [8].
is method involves transferring a switch from the domain of an overloaded controller to that of an underloaded
troller, thereby optimizing load distribution and improving overall network performance.

espite the potential of switch migration operations and multi-controller frameworks, several gaps remain in the
sting research. First, many approaches rely on simplistic single-level thresholds or assume uniform controller
acities, leading to inaccuracies in dynamic environments. Second, the high cost of switch migration often
ains unaddressed, resulting in suboptimal network performance. Finally, current load evaluation methods

quently overlook the importance of using multiple metrics, such as CPU usage, memory consumption, and
ndwidth, to comprehensively assess controller loads. These gaps highlight the need for a more accurate, efficient,
d practical load-balancing framework for software-defined networks.

1

Journal Pre-proof

Recent advancements in software-defined networks (SDNs) and their extension to satellite networks highlight
the growing complexity and potential of these systems. The integration of multi-domain networks in the 6G era,
aim
suc
em
the
[10
ab
im
of

T
det
effi
lev
pri
effi
an
In

T
the
res

2

I
ba
mu
or
an

2.

R
ap
thr
rei
pa
int
the
Ed
ES
dis
top
CP
sys

Z
the
wo
Jo
ur

na
l P

re
-p

ro
of

ed at supporting applications like extended reality (XR) and holographic communications, faces challenges
h as domain isolation and resource inefficiencies [9]. Similarly, studies in software-defined satellite networks
phasize the importance of optimizing multi-controller placement using meta-heuristic approaches, such as
Adaptive Virtual Bee Optimization Algorithm (AVOA), to enhance network reliability and control delay

]. Furthermore, techniques like Virtual Network Request Load Balancing Profit (VNR LBP) demonstrate the
ility to mitigate congestion by virtualizing switches and optimizing resource utilization, leading to notable
provements in throughput, delay, and cost efficiency [11]. These recent developments underscore the necessity
robust frameworks to address the dynamic requirements of modern SDNs and their satellite counterparts.

his article focuses on load balancing among controllers in software-defined networks, aiming to accurately
ermine controller statuses using multiple thresholds while accounting for their varying capacities. To achieve
cient load distribution, switch migration operations are employed, strategically grouping controllers at different
els to minimize unnecessary migrations. Given the high cost associated with switch migrations, the approach
oritizes reducing migration overhead by selecting the most suitable switch and target controller with optimal
ciency. The proposed framework’s performance is evaluated based on response time criteria through the design
d implementation of various scenarios.
this regard, the main contributions of this study are as follows:

1. Development of a Multi-level Approach for Determining Controller Status: This paper introduces an in-
novative method for accurately determining the load status of controllers using multiple thresholds. This
approach significantly enhances the precision in identifying overloaded and underloaded controllers.

2. Load Calculation of Controllers Using Multiple Metrics: We propose a method for calculating the load
on controllers that incorporates three key metrics: CPU usage, memory consumption, and bandwidth
utilization. This approach allows for a more precise assessment of the load status of controllers and facilitates
optimal load distribution.

3. Optimized Switch Migration Operations: This research investigates and optimizes the switch migration
operations. By employing novel techniques, switches selected for migration are strategically chosen to
reduce the load on overloaded controllers, thus improving the network’s overall efficiency.

he structure of the paper is outlined as follows: Section 2 covers related works, while Section 3 elaborates on
proposed scheme. Section 4 details the evaluation and implementation setup and discusses the performance

ults. Finally, Section 5 presents the conclusions of the study.

Related works

n this section, we introduce the related works that have addressed the load balancing of controllers. Load
lancing in software-defined networks has been widely studied under two main approaches: single-threshold and
lti-threshold methods. Single-threshold methods define a specific threshold to classify controllers as overloaded
underloaded, while multi-threshold methods use multiple levels to assess controller states more dynamically
d accurately.

1 Single Threshold

eference[13] suggests a software-defined multiple load balancing strategy that relies on response time. This
proach first measures the response time of the controllers. The controller’s response time determines the
eshold and is divided into overload and underload controllers. Reference[14], Xiang et al. proposed a deep
nforcement learning architecture for software-defined networks to solve the switch migration problem. In this
per, a model is designed for DDQN, which decides how to transfer switches between controllers. Reference[15]
roduces an efficient switch migration-based load balancing (ESMLB) framework. This framework explores
use of software-defined networks (SDN) with multiple controllers to enhance reliability and scalability in

ge Computing (EC) environments, particularly in the context of the Internet of Things (IoT). The proposed
MLB framework focuses on efficient switch migration for load balancing, addressing issues such as uneven load
tribution among controllers and suboptimal performance caused by dynamic network demands and changing
ologies. By using a decision analysis method to rank controllers based on criteria such as memory usage and
U load, ESMLB seeks to optimize resource utilization and improve overall performance in SDN-based IoT
tems.

afar et al.[16] have introduced a dynamic switch migration-based load balancing (DSMLB) approach to tackle
challenges associated with managing Internet of Things (IoT) traffic in Software-Defined IoT (SD-IoT) net-

rks. This framework proposes a dynamic switch migration strategy to optimize load balancing performance,

2

Journal Pre-proof

addressing the limitations of existing techniques in handling real-time traffic variations and diverse network
topologies. By implementing the DSMLB framework, the authors aim to enhance load balancing by dynamically
tra
ove
the
an
sco
the
int
pla
iss
a s
pe

mi
loa
Mo
pa
sw
ap
tim
net

2.

R
Th
lev
sw

B
of
cos
the
ine
of
Ho
pro
wit
in
ba
cal
the
Jo
ur

na
l P

re
-p

ro
of

nsferring switches from overloaded to underutilized controllers, considering key metrics like controller input
rhead, control plane request rate, and capacity. Through experimental testing on the Mininet platform with
RYU controller, the DSMLB mechanism shows significant enhancements in reducing controller response time,

d migration cost, and improving control plane load balancing efficiency compared to standard methods, under-
ring its effectiveness in managing controller workload within SD-IoT architectures. The authors of [17] address
issue of uneven load distribution among distributed controllers in Software-Defined Networking (SDN) by

roducing a dynamic and adaptive load balancing mechanism. The mechanism utilizes a hierarchical control
ne to estimate the load of each controller based on controller and switch factors. The article[18] addresses the
ue of load imbalance in the software-defined networking (SDN) control plane by proposing switch migration as
olution. This involves moving switches from overloaded controllers to underutilized ones to improve network
rformance and resource utilization.
Reference[19] presents GLBMF, a load-balancing method driven by greediness that focuses on reducing switch

grations and giving priority to low-traffic mice flows. GLBMF operates by redistributing switches from heavily
ded controllers to lightly loaded ones when the deviation from the average load surpasses a predefined threshold.
reover, it gives precedence to switches with minimal mice-flow traffic for relocation to minimize network-wide
cket losses. Experimental results indicate that GLBMF surpasses conventional methods in terms of throughput,
itch movements, response time, and packet loss mitigation. In the paper [20], a holonic multi-agent-based
proach is introduced to solve the controller placement problem in SDN-SG networks. Using this method, the
e complexity of the problem is significantly reduced, and load balancing is effectively distributed across the
work.

2 Multi Threshold

eference[21], they have proposed the migration switch scheme of Multi Threshold Load Balancing (MTLB).
is design first sets the multi-level threshold and then determines the status of the controllers, if the controller
el changes, the rest of the controllers are notified, and finally, by carefully studying the behavior of the migrant
itch and the target controller, it has provided a method for the migration operation.

ased on the articles that have been explained and a comparison has been made between them in Table I, most
the articles in the field of controller load balancing have problems of a single domain, high switch migration
t, lack of selection of the appropriate target controller, and computational complexity. First, we deal with
problem of a single province. Single states do not provide accurate classification of controllers, leading to

fficient load balancing. However, the paper [23] adopted a multi-threshold approach by considering the number
incoming packets to the controller, which does not provide a precise criterion for evaluating the controller load.
wever, in this article, the problem is that all controllers have the same capacity. Therefore, to solve this
blem, in this article, an attempt has been made to use controllers with different capacities and combine them
h the multi-level threshold approach to provide accurate scaling and classification of controllers. In addition,
this plan, for accurate measurement of the controller load, CPU consumption criteria, memory usage, and
ndwidth are used to evaluate the controller load. Then, by an algorithm that does not have the complexity of
culations; the target switch and the appropriate target controller are selected to solve the problem of choosing
proper target controller and the problem of high switch migration costs.

3

Journal Pre-proof

Table 1: The Summary of the Notations that are used

R

3

I
cal
to
ove

3.

A
pla
sev
Th

T
wh
the
ma
cj
Jo
ur

na
l P

re
-p

ro
of

eferences Parameters Threshold controller Advantage Dis-advantage

[13] Response time Single Floodlight
Quickly balancing

the load of controllers
High switch

migration cost

[14] Packet-in Single Ryu
Enhancing

load balancing
High time
overhead

[15]
CPU, Memory,
Bandwidth

Single Floodlight
reducing

migration times
Not suitable for

small environments

[16]
CPU, Memory,
Bandwidth

Single Ryu
Reducing

response time
High cost

and complexity

[18] Packet-in Single DHA-CON
Adequate use of

controller resources

Static connection
between switch
and controller

[19] Packet-in Single Ryu
Increase network

throughput, reduce
response time

Equal consideration
of the capacity
of all controllers

[21] Packet-in Multiple Floodlight
Controller overhead

is low

Equal consideration
of the capacity
of all controllers

Proposed framework

n this section, we will describe the proposed plan. The CPU, memory, and bandwidth criteria are used to
culate the controller load in this plan. Next, the controller load is compared against the multi-level thresholds
determine the controller’s level. Based on the load level of the controller, which is at a high load level or
rloaded, the switch migration operation is performed.

1 System Model

s you can see in Fig. 1, the system model of the proposed design includes several controllers in the control
ne, where each controller in the data plane contains a domain. The domain of each controller also includes
eral switches, the number of switches in the domain of each controller is based on the capacity of that controller.
e controllers are also connected so that each controller is independently aware of the status of the entire network.

Figure 1: System model

he network consists of switches and controllers. Let C = {c1, c2, . . . , cj , . . . , cK} represent the set of controllers,
ere K denotes the total number of controllers in the network. Similarly, S = {s1, s2, . . . , si, . . . , sN} represents
set of switches, with N as the total number of switches in the network. As mentioned earlier, each controller
nages a specific subset of switches. Consequently, the total number of switches within the domain of controller
is denoted as N ′. The notation sji refers to a switch located within the domain of controller cj . As illustrated

4

Journal Pre-proof

in Figure 1, which depicts the flowchart of the prediction algorithm, the process begins with measuring the
controller’s load. In the second step, a multi-level threshold mechanism is applied to classify controllers into
diff
ap
pro

3.

Th
loa

1

1

1

1

1

Jo
ur

na
l P

re
-p

ro
of

erent levels. The third step involves the load balancing operation, which, if necessary, includes selecting an
propriate target switch, identifying a suitable target controller, and finally, executing the switch migration
cess.

2 Framework flowchart

e operational flow of the proposed DLBMT framework is illustrated in Fig. 2, which outlines the step-by-step
d balancing process, from load monitoring to switch migration.

1. load measurement of the controller: the controller load is calculated based on CPU usage, memory, and
bandwidth metrics. The controller load is a numerical value between 0 and 100.

2. multilevel threshold: Four thresholds are available for determining the controller level: idle level, normal
level, high load level, and overload level. Subsequently, the controller’s level is determined based on its
load.

3. Notify controller: If the controller’s level changes, other controllers are informed.

4. Status of the controller: When a controller is at the normal level, it can manage the domain effectively.
However, when a controller is in the idle, high load, or overload level, a switch migration operation is
executed if a suitable migration switch and target controller pair are available.

5. ratio of the switch’s consumed resources to the distance of the switch from the controller: For load balancing
operations, the ratio of the resources consumed by the source controller to the distance between the switch
and the source controller is calculated.

6. Selecting appropriate migration switches from the available switches within the domain of the source con-
troller: The calculated value is compared for all switches within the domain to the average resources
consumed by the source controller to the distance between the switch and the source controller. Switches
that have a higher resource consumption ratio compared to the average for the source controller are added
to the migration switch set.

7. Determining the target controller’s load status (whether it is operating at a normal or idle level): non-source
controllers in the idle or normal level are selected as target controllers.

8. Determining the target controller’s load status (whether it is operating at a normal or idle level): The load
levels for the target controllers after switch migration are calculated for each switch in the migration switch
set.

9. Determining the source controller’s load status after the switch migration.

0. Removing the controller from the list of suitable target controllers of the switch: If a target controller is
not in the idle or normal level after switch migration, it is removed from the list of target controllers for
the switch in the migration switch set.

1. Calculating the degree of load imbalance between the source controller and the target controller: For the
remaining target controllers, the degree of load imbalance between the source controller and the target
controller is calculated.

2. Choose the most appropriate target controller for each switch and save it: For the remaining target con-
trollers, the degree of load imbalance between the source controller and the target controller is calculated.
Among the target controllers in the migration switch set, the target controller with the least load imbal-
ance degree is selected as the suitable target controller for the switch. This pair of the target controller and
switch is stored in a set.

3. Any pair with a lower efficiency is selected for the migration operation: If the migration switch set and
target controller set are not empty, the migration efficiency is calculated for all available pairs in the set.
The target controller and migration switch with the least migration efficiency are selected for the switch
migration operation.

4. turn on a controller or add a controller to the network or do not have switch migration: If the migration
switch set and target controller set are empty, and the source controller is idle or at a high load level, no
switch migration operation is performed. However, if the source controller is at the overload level and there
is a previously turned-off controller available, it is turned on, and the load-balancing operation is carried
out. Otherwise, a new controller is added to the network.

5

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 2: Framework flowchart

6

Journal Pre-proof

All the symbols used in this article are listed in Table 2.

3.

3.3

T
loa
wit
on
des
con
fol

E
Lo
con
for
(2)
thi
con

3.3

A
loa
thr
firs
is
an
op
Jo
ur

na
l P

re
-p

ro
of

Table 2: The Summary of the Notations that are used.
Symbol Description
cj controller

sji The switch in the controller domain cj

£j
i

Total use of controller resources by a switch sji
in the controller domain

cj

ψsj
i

The ratio of resources consumed by the switch to the distance
between the switch and the controller

hmi Distance switch sji to controller cj
LRcj Load controller cj
LRck Load controller ck

LR∗
cj

The amount of load of the source controller cj
after the migration of the switch sji

£k
ij

The consumption rate of the switch muhajirsji
from the resources of the target controller ck

DC∗
(cj ,ck)

Degree of load imbalance between source controller cj
and target controller ck for switch sji

LR∗ Average load of controllers after migration
ϑj,k Migration efficiency
f(sj

i
,ck)

The cost of immigration

hik Distance switch sji to target controller ck

3 Formulation proposed algorithm

.1 Load Measurement

o ensure efficient network management, it is crucial to accurately measure the load on each controller. The
d measurement process involves evaluating the resource consumption of the controllers based on interactions
h their associated switches. This section presents the proposed method for calculating controller load, focusing
CPU, memory, and bandwidth usage. In the first step, the controller load is calculated using the proposed
ign. To calculate the load of the controller, first, the consumption of CPU, memory, and bandwidth of each
troller is calculated by the packet-in requests of the switches in the domain of that controller, which is as
lows:

£j
i = a · (LoadCPU

CPU
) + b · (LoadMem

Mem
) + c · (LoadBw

Bw
) (1)

£j =
∑

s
j
i
∈cj

£j
i (2)

LRcj = £j ∗ 100 (3)

quation (1): £j
i represents the total resource usage of controller cj by switch sji within its domain. LoadCPU ,

adMem, and LoadBw denote the respective consumption of CPU, memory, and bandwidth by switch sji on
troller cj . Meanwhile, CPU , Mem, and Bw represent the total capacities of CPU, memory, and bandwidth
the controllers. The coefficients a, b, and c are used in the calculation, with their sum equaling one. Equation
calculates the total resources consumed by the switches connected to controller cj . Equation (3) then converts
s total into a percentage, yielding a value between one and one hundred. This calculated value for each
troller cj represents the load of the controller.

.2 Multi-level threshold

fter calculating the controller load, the controller’s level is determined. As mentioned earlier, the controller
d is a value between 0 and 100. As illustrated in Fig. 2, the value of 100 is divided into four levels, with three
esholds: the first threshold is 25, the second is 50, and the third is 75. If the controller’s load is less than the
t threshold (i.e., between 0 and 25), it is classified as idle. If the load is between 25 and 50, the controller
considered to be at a normal level. If the load is between the second and third thresholds (i.e., between 50
d 75), the controller is classified as having a high load. At this level, if conditions permit, a switch migration
eration is performed. Finally, if the controller’s load exceeds the third threshold (above 75), it is classified as

7

Journal Pre-proof

overloaded, and a switch migration operation must be executed. This operation is carried out even if there is no
target controller for migration; in such cases, a new controller is added to the network.

I
con
list
is a
or

I
int
to
the

B
sw
con
Th

con
det
is
(w
sto

is
ove
alg

Al

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
 Jo
ur

na
l P

re
-p

ro
ofFigure 3: Multi-level threshold

n Algorithm 1, the process of determining the controller level has been performed. In this algorithm, the
troller load, the current level of the controller (denoted by qj), and the list of levels are taken as inputs. The
of levels, Q[i], includes four values: Q[1]=25, Q[2]=50, Q[3]=75, and finally Q[4]=100. The algorithm’s output
new level for the controller and a boolean value that indicates whether the level of the controller has changed

not.

n line 3 of the algorithm, a loop is created to consider all the controllers in the network. In line 4, there is an
ernal loop for the levels, with a maximum value of 4. In lines 5 and 6, the new controller load variable is set
zero, and the current load of the controller is also checked. In line 7, there is an IF condition for comparing
controller load with the levels to determine the level of the controller.

ased on the example network depicted in Figure 1, which consists of three controllers, each with multiple
itches in its domain: in the domain of controller c1, there are four switches ⟨s11, s12, s13, s14⟩; in the domain of
troller c2, there are three switches ⟨s21, s22, s23⟩; and in the domain of controller c3, there are two switches ⟨s31, s32⟩.
e controller loads are LRc1 = 76, LRc2 = 47, and LRc3 = 21.
The level determination algorithm is applied to all three controllers, resulting in the following classifications:
troller c1 is in the overload level, controller c2 is at the normal level, and controller c3 is in the idle level. To
ermine the level for controller c2 with a load of 47, the controller’s load is first compared with Q[1] (which
25). Since the condition is met, the variable i is incremented by 1, and the load is then compared with Q[2]
hich is 50). The condition holds again because 47 < 50. As a result, in line 6, the value of i (which is 2) is
red in the cj variable, and the loop terminates.
When the value of cj is equal to 1, it indicates that the controller is in the idle state. If cj = 2, the controller

at a normal level. If cj = 3, the controller is at a high-load level, and finally, if cj = 4, the controller is in an
rload state. In line 11, the new controller level is compared with its current level. If the level has changed, the
orithm outputs a value of True; otherwise, it outputs False.

gorithm 1 Multi-level threshold

: Input: LR∗
cj , current controller load level: qj , list of thresholds: Q[i]

: Output: cj , T= true or F=false
: for j = 1 do
: for i = 1 do
: ci ← 0
: Check qj
: if LRcj < Q[i] then
: cj ← i
: break
: end if
: i← i+ 1
: end for
: if qj = cj then
: return false
: else
: return qj = cj
: return true
: end if
: j ← j + 1
: end for

8

Journal Pre-proof

3.3.3 Load balancing

T
at
tri
wil

net
loa
wil

its
if a
exe
op
con
sji

I

the
rep
all

exc
the

I
sel

con
cj .
In

£k
i

con

the

I
ck.

E
cal

W
an
eva
cho
pa
the
 Jo

ur
na

l P
re

-p
ro

of

his section discusses the controller load balancing operation, with the goal of maintaining the controller load
a normal level. Once the levels of the controllers are assessed, any changes in a controller’s load level will
gger notifications to the other controllers. If a controller in the network is operating at an under-load level, we
l attempt to deactivate it based on the network conditions.
If, in addition to the source controller operating at an under-load level, there is another controller in the
work that is either at an under-load or normal load level, and this controller continues to operate at an under-
d or normal level after the switch migration operation, the migration will be executed, and the source controller
l be deactivated.
When a controller operates at a normal load level, it indicates that the controller can effectively manage
domain, and efforts will be made to sustain the controllers’ loads in the network at this level. In contrast,
controller reaches a high load level, it signifies that the controller is approaching overload, prompting the

cution of load balancing operations for controllers at this high load threshold. To perform load balancing
erations for controllers at a high load level, we first calculate, for all switches in the domain of the high-load
troller, the ratio of total resource usage by switch sji in the domain of controller cj to the distance of switch
from the controller cj . This is done using the following equation (4):

ψ
s
j
i
=

£j
i ∗ 100
hmi

(4)

n this equation, ψ
s
j
i
represents the ratio of switch resource consumption to the distance of the switch from

controller, while £j
i denotes the total resource consumption of controller cj by switch sji in its domain. hmi

resents the distance of switch sji from controller cj . We then calculate the average value of this ratio for
switches in the domain of controller cj and store the value of ψ

s
j
i
for each switch in an array. If the value

eeds the average, the array containing switches selected from the source controller’s domain is referred to as
migration switch array.

LR∗
cj = [LRcj − (£j

i ∗ 100)] (5)

LR∗
ck = [LRck + (£k

ij ∗ 100)] (6)

n Equation (5), the value LR∗cj represents the load of the source controller cj after the migration of the
ected switch sji from the migration switch array. In this equation, LRcj , which denotes the load of the source

troller cj , is subtracted by £j
i , which indicates the total resource consumption by the switch sji on the controller

Since £j
i is a value between 0 and 1, it is multiplied by 100 in this formula to yield a value between 0 and 100.

Equation (6), LR∗
ck represents the load of the target controller ck after the migration of the switch. The term

j indicates the resource consumption of the selected switch sji from the migration switch array on the target
troller. In this equation, LRck , which denotes the load of the target controller ck, is added to £k

ij , representing

total resource consumption of controller ck by switch sji . The value of £k
ij is calculated as follows:

£k
ij = a · (LoadCPU

CPUk
) + b · (LoadMem

Memk
) + c · (LoadBw

Bwk
) (7)

n equation (7), the value of CPUk,Memk and Bwk indicates the maximum capacity of the target controller

DC∗
(cj ,ck)

=
1
2
(
√

(LR∗
cj − LR∗)2 +

√
(LR∗

ck − LR∗)2

LR∗ (8)

quation (8), the degree of load imbalance between the source controller cj and the target controller ck is
culated for the switch sji , and LR

∗ represents the average load of the controllers after migration.

e first identify and pair each controller that remains idle or in a normal state after the migration of switch sji
d store these pairs in a separate array. Since multiple target controllers may be available for a given switch, we
luate all possible pairs and select the controller with the lowest degree of load imbalance. In other words, we
ose the most suitable target controller for each switch and save the selected pair. If no valid switch-controller
irs are found, the process stops. Otherwise, the migration efficiency is calculated for all pairs, and the one with
highest efficiency is chosen for the migration operation. The efficiency calculation is as follows:

ϑj,k =
| DC∗

(cj ,ck)
−DC(cj ,ck) |

f
(s

j
i
,ck)

(9)

f
(s

j
i
,ck)

= (£k
ij ∗ 100) ·min(hik) (10)

9

Journal Pre-proof

As you can see, the migration efficiency is calculated in equation (9), which is calculated by deducting the
difference in the degree of load imbalance between the source controller cj and the target controller ck after
the
con
ϑj,

be

is c
ck
the
ha

F
the
if t
net
pe

A
hig
in
all
to
res
sw
con
the

I
op
of
ψs

sto

A
tro
sta
mi
des
tar
im

I
tar
aft
con
con
for
c2
des

F
rat
pa
sel
alg
des
pre
ad
 Jo

ur
na

l P
re

-p
ro

of

switch migration operation and the load imbalance degree between the source controller cj and the target
troller ck before the operation. Switch migration is calculated and divided by migration cost. In this formula,

k represents migration efficiency and DC∗
(cj ,ck)

) represents the degree of load imbalance between two controllers

fore the migration operation, and f
(s

j
i
,ck)

represents Pays for immigration. Equation (10), the cost of migration

alculated by multiplying the amount of resources consumed by the migrator switch sji from the target controller
by the distance between the migrator switch sji and the target controller ck. In this formula, hik represents
distance of switches sji to the target controller ck. Finally, each migrating switch and target controller that

s the lowest efficiency is selected for the switch migration operation.

or the controllers that are overloaded, we also have the switch migration operation. All the steps to perform
switch migration operation are the same as for the controllers that are overloaded, with the difference that
he switch array and the appropriate target controller were empty, if we had a switched-off controller in the
work We turn it on and perform the migration operation. Otherwise, we add a controller to the network and
rform the switch migration operation.

lgorithm 2 for load balancing between controllers using switch migration is for controllers that are in idle,
h, or overload levels. Controllers at the normal level can manage their domains well. In steps 2-9, switches
the domain of the source controller that are suitable for migration are stored. In step 2, there is a loop for
switches in the domain of the source controller. In step 3, the ratio of the resources consumed by the switch
the distance from the switch to the source controller is calculated using formula 4. Then, in step 5, the total
ources consumed by the switch from the source controller are calculated. After performing calculations for all
itches in the domain of the source controller, the average resources consumed by the switch from the source
troller are calculated in step 6. Then, using the condition in step 7, any switch that has a value greater than
average is stored in the P array.

n the given example, controller c1 is in an overload state, and to achieve balance in the network, load-balancing
erations must be carried out for controller c1. Initially, the resource consumption of all switches in the domain
controller c1 is calculated, yielding the following values: < 20, 14, 7, 6 >. Next, the values of ψsj are computed:
j = 47 and ψsj = 12. Since switches s11 and s12 have higher resource consumption than the average, they are
red in the migration array, denoted as ρ.

fter selecting the appropriate switches for migration, the next step is to identify a suitable destination con-
ller. The primary condition for a destination controller is that it must be in either an idle or normal load
te. Following this, the resource consumption of both the source controller and the destination controller after
gration is calculated. The load level of the destination controller after migration is then determined. If the
tination controller falls into a high-load or overload state after migration, it is removed from the list of potential
get controllers. Conversely, if the destination controller remains in an idle or normal load state, the degree of
balance in resource consumption between the source and destination controllers is calculated.

n this example, switches s11 and s12 are selected for migration. Controllers c2 and c3 are considered potential
get controllers. First, the resource consumption of the source controller and potential destination controllers
er the migration is calculated for switch s11. Specifically, LRc1 = 56, LRc2 = 78, and LRc3 = 46. Since
troller c2 enters the overload level after migration, switch s11 is removed from the list of potential destination
trollers. Therefore, the only remaining viable pair is switch s11 and controller c3. The same process is repeated
switch s12, with the following values: LRc1 = 47, LRc2 = 90, and LRc3 = 55. In this case, both controllers
and c3 enter the overload level after migration, meaning neither of them can be considered as a potential
tination controller.

inally, to select the best pair of switches and controllers for migration, the pairs with the highest migration
e are selected according to steps 30-35. If there are multiple pairs of switches and controllers for migration, the
ir with the highest migration rate is selected. In this example, the pair (s12, C3) with a migration rate of 0.009 is
ected. After selecting the pair of switches and controller for migration and saving them in Y, steps 25-29 of the
orithm stop the migration operation if =0 and the source controller is in the idle or normal level, as a suitable
tination controller has not been found. However, if the source controller is in the high or overload level, the
viously turned-off controllers are turned on again or the network is expanded and additional controllers are
ded to the network.

10

Journal Pre-proof

Al

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
 Jo
ur

na
l P

re
-p

ro
of

gorithm 2 Load Balancing

: Input: cj , sji , hmi , m , LRcj , LRck

: Output: SC
: if cj == 1||cj == 3||cj == 4 then

: for sji ∈ cj do

: ψsj
i
= £j

i ∗ 100/hmi

: ψsj = ψsj + ψsj
i

: end for
: ψsj = 1

mψsj

: if ψsj
i
>= ψsj then

: ρ← ψsj
i

: end if
: for ψsj

i
∈ ρ do

: LR∗
cj = [LRcj − (£j

i ∗ 100)]
: LR∗

ck
= [LRck − (£k

ij ∗ 100)]
: £k

ij = a · (LoadCPU

CPUk
) + b · (LoadMem

Memk
) + c · (LoadBw

Bwk
)

: The process of determining the level according to Algorithm 1 for LRc∗
k
is carried

out, and the output is stored in C∗
k

: DC∗
(cj ,ck)

=
1
2 (
√

(LR∗
cj

−LR∗)2+
√

(LR∗
ck

−LR∗)2

LR∗

: end for
: while ρ > 0 do
: for C∗

k == 1||C∗
k == 2 do

: if DC∗
(cj ,ck)

< tmp then

: tmp← DC∗
(cj ,ck)

: end if
: γ(sji , ck)
: end for
: end while
: if γ == 0 then
: if cj == 1||cj == 3 then
: The switch migration operation is not carried out.
: if cj == 4 then
: A controller is added to the network.
: else
: for (sji , ck) do

: ϑj,k =
|DC∗

(cj,ck)−DC(cj,ck)|
f
(s

j
i
,ck)

: if R > ϑj,k then

: SC ← (sji , ck)
: end if
: end for
: end if
: end if
: end if
: end if

11

Journal Pre-proof

4 Proposed framework

4.

T
NS
as
lan
RA
too

T
gie
we
the
pro

T
DL

4.

4.2

T
tim
dem
var
me
tiv
Jo
ur

na
l P

re
-p

ro
of

1 Experimental setup

he proposed Distributed Load Balancing Mechanism for Controllers (DLBMT) has been evaluated using the
2 framework, demonstrating a high level of authenticity. Within the DLBMT scheme, we selected RYU [16]
the experimental controller. RYU is an OpenFlow controller that is implemented in the Python programming
guage. The simulation experiments were carried out on a PC equipped with an Intel Core i7 CPU and 12GB of
M. Additionally, the study calculated the average resource demand of PACKET-IN messages using the Iperf
l [17].

he performance of the proposed DLBMT mechanism was evaluated by applying it to modern network topolo-
s in real-time scenarios, including Interroute and ARN, sourced from the Topology-zoo website. Furthermore,
incorporated the Atlanta and Germany50 topologies from the SND-lib, each with varying scales, to assess
effectiveness of the MTDLB methodology. A detailed summary of the network topology characteristics is
vided in Table III.

Table 3: Indicated The Network Topologies Characteristics.

topology nodes edges controller
Capacity of

controller(unit)
Atlanta 15 22 3 2k
ARN 30 29 4 2.5k

Germany50 50 88 5 3k
Interroute 110 159 7 4k

o evaluate the DLBMT performance, we compare it with four different schemes: DSMLB[11], SMSC[13],
BM [14], DHA [15].

2 Simulation analysis

.1 Performance evaluation of average response time

he response time criterion is utilized to evaluate the performance of the controller, as an increase in response
e indicates an unbalanced load on the controller. As illustrated in Figure 4, the proposed DLBMT algorithm
onstrates a shorter response time compared to the DSMLB, DHA, DLBM, and SMSC algorithms across
ious topologies, including Atlanta, ARN, Germany50, and Interroute. The response time of the DLBMT
chanism has improved by 18%, 36%, 43%, and 53% compared to DSMLB, DHA, DLBM, and SMSC, respec-
ely.

12

Journal Pre-proof

Fig
Ge

4.2

T
inc
res
mo
to
du
can
typ
an

B
net
ene
fou
sw
Jo
ur

na
l P

re
-p

ro
of

ure 4: Performance Evaluation of Average Controller Response Time in topology Atlanta, Interroute,
rmany50, and ARN.

.2 Performance evaluation of migration cost

he migration cost is defined as the total resource expenditure incurred during the transfer of a switch, which
ludes the time taken for the migration, the bandwidth utilized, and any degradation in network performance
ulting from the migration process. Migration cost in controller load balancing refers to the cost associated with
ving a switch from one controller to another. This cost can include several factors, such as the time required
migrate the switch, the bandwidth consumed during the migration, and the impact on network performance
ring the migration. Minimizing migration cost is crucial in controller load balancing because frequent migrations
increase network overhead and reduce performance. To minimize migration costs, load balancing algorithms
ically consider factors such as the current load on each controller, the available resources on each controller,
d the migration cost associated with moving a switch from one controller to another.

y carefully balancing the load among controllers and minimizing migration costs, we can ensure that the
work operates efficiently and effectively, while also minimizing the impact on network performance and reducing
rgy consumption. Yes, as shown in Figure 5, the migration cost of the proposed strategy is lower than the other
r strategies in all topologies. This indicates that the proposed strategy is effective in selecting the appropriate
itch and controller for migration, resulting in lower migration costs and improved network performance.

13

Journal Pre-proof

Fig
AR

4.2

T
con
wo
effi
an
loa
ava

I
DL
in
6,
net
Jo
ur

na
l P

re
-p

ro
of

ure 5: Performance Evaluation of migration cost in topology Interroute , Germany50 , Atlanta , and
N.

.3 Degree of load imbalance performance evaluation

he degree of load imbalance between controllers in controller load balancing refers to the difference in resource
sumption or workload between controllers in a network. Load-balancing algorithms aim to distribute the
rkload or resource consumption evenly among the available controllers to improve network performance and
ciency. A high degree of load imbalance can lead to longer response times, decreased network availability,
d higher energy consumption. By monitoring the degree of load imbalance and implementing appropriate
d-balancing techniques, network administrators can ensure that the workload is distributed evenly among the
ilable controllers, leading to improved network performance and reduced energy consumption.

n this section, the degree of imbalance in load strategy DLBMT and four other strategies (DSMLB, DHA,
BM, SMSC) are compared in four different topologies. The proposed strategy has the least degree of imbalance
load in all topologies and under increasing transmission rates of PACKET-IN messages. As shown in Figure
the degree of load imbalance of the DLBMT strategy is lower than that of the other strategies under varying
work loads.

14

Journal Pre-proof

Fig
AR

4.2

T
the
qu
ove
be
res
hig
loa
op
Sev
Jo
ur

na
l P

re
-p

ro
of

ure 6: Performance Comparison on Degree of Load Imbalance in topology Interroute, Germany50,
N, and Atlanta.

.4 The Control plane load balancing rate

he control plane load balancing rate is a critical metric in software-defined networking (SDN) that measures
effectiveness and efficiency of distributing control loads across multiple controllers. This rate indicates how

ickly and effectively the load is balanced across the control plane, ensuring that no single controller becomes
rwhelmed while others remain underutilized. The importance of the control plane load balancing rate can
summarized as follows: A higher load balancing rate can enhance overall network performance by reducing
ponse times and minimizing the likelihood of bottlenecks. Additionally, effective load balancing contributes to
her network reliability; should a controller fail or become overloaded, the system can swiftly redistribute the
d to other controllers, thereby maintaining continuous network operation. Furthermore, efficient load balancing
timizes resource utilization across controllers, leading to lower operational costs and improved energy efficiency.
eral factors influence the control plane load balancing rate.

15

Journal Pre-proof

Fi

4.2

I
by
im
be

sw
to
Jo
ur

na
l P

re
-p

ro
of

gure 7: The control plane load balancing rate in topology Interroute, Germany50, ARN, and Atlanta.

.5 Performance evaluation of communication overhead

n controller load balancing, communication overhead refers to the extra data and traffic that is generated
the controllers as they communicate with each other to balance the load. This communication overhead can
pact the performance of the network, as it consumes bandwidth and processing resources that could otherwise
used for data transmission.
The proposed strategy results in less communication overhead between controllers and between controller-

itch pairs compared to other strategies. The controller-to-controller communication overhead is very low due
multiple thresholds and sending messages to other controllers in case of a controller level change.

16

Journal Pre-proof

Fig
AR

4.2

In
rel
pro
Jo
ur

na
l P

re
-p

ro
of

ure 8: The performance evalution of communication overhead in topology Interroute, Germany50,
N , and Atlanta.

.6 Comparison Communication Delay, Reliability, and CPU and memory Consumption
Metrics

software-defined networking (SDN), it’s crucial to evaluate various metrics such as communication delay,
iability, CPU consumption, and memory consumption to ensure optimal network performance. This section
vides a comparative analysis of these metrics in different SDN strategies or configurations.

• Communication Delay: Communication delay refers to the time taken for a message to travel from
one point to another in the network, encompassing transmission time, processing time, and queuing time.
Factors influencing communication delay include network topology, which can increase delays due to longer
paths and more hops, as well as the load balancing strategy, with different strategies potentially requiring
varying levels of communication between controllers and switches.

• Reliability: Reliability is a crucial metric that measures the ability of the network to maintain consistent
performance and availability, particularly in the face of failures or increased loads. Several factors influence
reliability. One key factor is redundancy; the presence of backup controllers can significantly enhance
the network’s reliability by providing alternative options in case of a controller failure. Additionally, the
efficiency of load balancing plays a vital role in ensuring reliability. Efficient load balancing helps prevent
overloads, which can lead to system failures, thereby contributing to a more stable and dependable network
operation.

• CPU Consumption: CPU consumption is defined as the amount of processing power utilized by the
controllers and switches to manage network operations. Several factors influence CPU consumption in
a network environment. One significant factor is the complexity of algorithms used for load balancing
and routing; more complex algorithms typically consume more CPU resources as they require additional
processing power to execute efficiently. Additionally, traffic volume plays a crucial role in determining CPU
consumption; as traffic volumes increase, the need for processing also rises to maintain optimal performance
levels across the network.

• Memory Consumption: Memory consumption measures the amount of memory used by network devices
to store routing tables, flow entries, and other necessary data.

17

Journal Pre-proof

Table 4: Comparison Table of Communication Delay, Reliability, and Processor and Memory Consump-
tio

Ta
tio

Ta
tio

Ta
tio

5

T
by
the
con
sw
con
fur
sug
Ad
wo

F
tha
tra
sum
Co
for
rel

re
Jo
ur

na
l P

re
-p

ro
of

n Metrics in Topology Interroute.
Metrics SMSC DLBM DHA DSMLB DLBMT

Communication Delay(ms) 11.2 10.3 8.5 9.4 6.7
Reliability(%) 92.4% 94.8% 96.1% 97.5% 99.1%
CPU usage(%) 49.8% 47.3% 41.8% 44.2 % 39.6%

Memory usage(MB) 165.3 154.9 139.6 148.2 128.7

ble 5: Comparison Table of Communication Delay, Reliability, and Processor and Memory Consump-
n Metrics in Topology GERMANY50.

Metrics SMSC DLBM DHA DSMLB DLBMT
Communication Delay(ms) 10.1 9.2 7.4 8.1 5.8

Reliability(%) 92.1% 94.4% 95.8 % 97.2 % 99.0%
CPU usage(%) 46.7% 44.0% 39.4% 41.7 % 37.1%

Memory usage(MB) 154.7 145.2 130.5 138.6 119.4

ble 6: Comparison Table of Communication Delay, Reliability, and Processor and Memory Consump-
n Metrics in Topology ARN.

Metrics SMSC DLBM DHA DSMLB DLBMT
Communication Delay(ms) 9 8.3 6.6 7.3 5

Reliability(%) 91.8 % 94.2% 95.5 % 96.8 % 98.7%
CPU usage(%) 45.2% 42.9% 37.6% 40.2 % 35.0%

Memory usage(MB) 146 136.9 124.8 132.4 113.5

ble 7: Comparison Table of Communication Delay, Reliability, and Processor and Memory Consump-
n Metrics in Topology ATLANTA.

Metrics SMSC DLBM DHA DSMLB DLBMT
Communication Delay(ms) 8 7.1 5.5 6.2 4.3

Reliability(%) 91.2% 94.0% 95.4 % 98.5 % 99.0%
CPU usage(%) 44.1% 41.5% 36.4% 38.9 % 33.8%

Memory usage(MB) 142.7 132.8 120.6 128.3 108.5

Conclusion:

his study aimed to address the challenges associated with controller load in software-defined networks (SDNs)
proposing a multi-level threshold approach for load balancing among controllers. The findings demonstrate that
proposed method effectively measures controller load using three critical metrics: CPU utilization, memory
sumption, and bandwidth usage. By accurately assessing the status of controllers and strategically executing
itch migration operations, the proposed framework significantly reduces response times across various traffic
ditions compared to existing methods. Despite these promising results, several challenges remain that warrant
ther exploration. Notably, the diversity in controller capacities can affect the accuracy of load distribution,
gesting the need for more sophisticated algorithms capable of evaluating real-time controller capabilities.
ditionally, the costs associated with switch migration operations pose a significant consideration; hence, future
rk should focus on optimizing these processes to minimize overhead while maximizing network efficiency.

urthermore, the dynamic nature of network traffic necessitates the development of intelligent algorithms
t can adaptively manage and distribute loads in real time. Incorporating machine learning techniques for
ffic prediction and adjustment of load distribution strategies could be a valuable avenue for future research.In
mary, this study lays the groundwork for enhancing load balancing in SDNs through innovative methodologies.

ntinued research in the areas of scalability, cost optimization, and adaptive load management will be essential
advancing the effectiveness of SDN architectures, ultimately leading to improved network performance and
iability.

ferences:

18

Journal Pre-proof

[1] Priyadarsini, M., and Bera, P. (2021). Software-defined networking architecture, traffic management, secu-
rity, and placement: A survey. Computer Networks, 192, 108047.

[
Int

[
A

[
me

[
SD

[
SD

[
Jou

[
for

[
Ch
Mo

[
Sa
Sp

[a
Mo
ali

[
rit
(C

[
tra

[
SD

[
IoT

[
wo

[
defi
tio

[
SD
 Jo

ur
na

l P
re

-p
ro

of

2] Montazerolghaem, A. (2023). Efficient Resource Allocation for Multimedia Streaming in Software-Defined
ernet of Vehicles. IEEE Transactions on Intelligent Transportation Systems.

3] Lakhani, G., and Kothari, A. (2020). Fault administration by load balancing in distributed SDN controller:
review. Wireless Personal Communications, 114(4), 3507-3539.

4] F.Hu, Q. Hao, and K. Bao, “A survey on software-defined network and openflow: From concept to imple-
ntation.” IEEE Communications Surveys. vol.16 . 2181-2206 .2014.

5] Dixit, A., Hao, F., Mukherjee, S., Lakshman, T., and Kompella, R. (2013). Towards an elastic distributed
N controller. ACM SIGCOMM computer communication review, 43(4), 7-12.

6] Alhilali, Ahmed Hazim, and Ahmadreza Montazerolghaem. ”Artificial intelligence based load balancing in
N: A comprehensive survey.” Internet of Things (2023): 100814

7] Hamdan, M., et al., A comprehensive survey of load balancing techniques in software-defined network.
rnal of Network and Computer Applications, 2021. 174: p. 102856.

8] Wang, C. a., Hu, B., Chen, S., Li, D., and Liu, B. (2017). A switch migration-based decision-making scheme
balancing load in SDN. IEEE Access, 5, 4537-4544

9]Zhang, Yuhan, Ran Wang, Jie Hao, Qiang Wu, Yidan Teng, Ping Wang, and Dusit Niyato. ”Service Function
ain Deployment with VNF-Dependent Software Migration in Multi-domain Networks.” IEEE Transactions on
bile Computing (2024).

10]wei Jiang, Wei, Haoyu Han, Yang Zhang, and Jianbin Mu. ”Multi-controller Placement in Software Defined
tellite Networks: A Meta-heuristic Approach.” In 2024 IEEE 99th Vehicular Technology Conference (VTC2024-
ring), pp. 1-7. IEEE, 2024.

11]Jenabzadeh, MohammadReza, Vahid Ayatollahitafti, MohammadReza Mollakhalili Meybodi, MohammadRez
llahoseini Ardakani, and Amir Javadpour.”VNR-LBP: A New Approach to Congestion Control Using Virtu-
zation and Switch Migration in SDN.” Wireless Personal Communications (2024): 1-25.

12] Li, J.-q., Sun, E.-c., and Zhang, Y.-h. (2018). Multi-threshold SDN controllers load balancing algo-
hm based on controller load. International Conference on Computer, Communication and Network Technology
CNT 2018), Wuzhen,

13] Cui, et al., “A load-balancing mechanism for distributed SDN control plane using response time.” IEEE
nsactions on network and service management, vol. 15. 1197-1206. 2018.

14] M.Xiang, et al., “Deep Reinforcement Learning-based load balancing strategy for multiple controllers in
N.” e-Prime-Advances in Electrical Engineering, Electronics and Energy, vol. 2. 100038. 2022.

15] K.S.Sahoo , et al., “ESMLB: Efficient switch migration-based load balancing for multicontroller SDN in
.” IEEE Internet of Things Journal, vol. 7. 5852-5860. 2019.

16] S.Zafar , et al., “DSMLB: Dynamic switch-migration based load balancing for software-defined IoT net-
rk.” Computer Networks, vol. 214. 109145. 2022.

17] W Lan, F Li, X Liu, Y. Qiu, A dynamic load balancing mechanism for distributed controllers in software-
ned networking, in: 2018 10th International Conference on Measuring Technology and Mechatronics Automa-
n (ICMTMA), IEEE, 2018, pp. 259–262.

18] G Cheng, H Chen, Z Wang, S.DHA Chen, Distributed decisions on the switchmigration toward a scalable
N control plane, in: 2015 IFIP NetworkingConference (IFIP Networking, IEEE, 2015, pp. 1–9. May.

19

Journal Pre-proof

[19] Prajapati, Upendra, Bijoy Chand Chatterjee, and Amit Banerjee. ”GLBMF: Greedy-Based Load Balancing
in SDN by Reducing Switch Migrations and Prioritizing Mice Flow Traffic.” Wireless Personal Communications
(20

[
pre

[
Ne
Jo
ur

na
l P

re
-p

ro
of

24): 1-24.

20]Keramati, Marjan, Sauleh Etemedi, and Nasser Mozayani. ”HMLB: Holonic multi-agent approach for
ventive controllers load-balancing in SDN-enabled smart grid.” Computer Communications 228 (2024): 107984.

21] H.Mokhtar , et al., “Multiple-level threshold load balancing in distributed SDN controllers.” Computer
tworks, vol. 198. 108369. 2021.

20

Journal Pre-proof

De

 ☒
th

 ☐
as

Jo
ur

na
l P

re
-p

ro
of

claration of interests

 The authors declare that they have no known competing financial interests or personal relationships
at could have appeared to influence the work reported in this paper.

 The authors declare the following financial interests/personal relationships which may be considered
 potential competing interests:

